Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
BMC Genomics ; 25(1): 433, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693476

RESUMEN

BACKGROUND: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. RESULTS: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. CONCLUSIONS: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.


Asunto(s)
Virus del Dengue , Genoma Viral , Serogrupo , Secuenciación Completa del Genoma , Virus del Dengue/genética , Virus del Dengue/aislamiento & purificación , Virus del Dengue/clasificación , Secuenciación Completa del Genoma/métodos , Humanos , Genotipo , Dengue/virología , Dengue/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Viral/genética
2.
Proc Natl Acad Sci U S A ; 120(45): e2310529120, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37906647

RESUMEN

The emergence of previously unknown disease-causing viruses in mammals is in part the result of a long-term evolutionary process. Reconstructing the deep phylogenetic histories of viruses helps identify major evolutionary transitions and contextualizes the emergence of viruses in new hosts. We used a combination of total RNA sequencing and transcriptome data mining to extend the diversity and evolutionary history of the RNA virus order Articulavirales, which includes the influenza viruses. We identified instances of Articulavirales in the invertebrate phylum Cnidaria (including corals), constituting a novel and divergent family that we provisionally named the "Cnidenomoviridae." We further extended the evolutionary history of the influenza virus lineage by identifying four divergent, fish-associated influenza-like viruses, thereby supporting the hypothesis that fish were among the first hosts of influenza viruses. In addition, we substantially expanded the phylogenetic diversity of quaranjaviruses and proposed that this genus be reclassified as a family-the "Quaranjaviridae." Within this putative family, we identified a novel arachnid-infecting genus, provisionally named "Cheliceravirus." Notably, we observed a close phylogenetic relationship between the Crustacea- and Chelicerata-infecting "Quaranjaviridae" that is inconsistent with virus-host codivergence. Together, these data suggest that the Articulavirales has evolved over at least 600 million years, first emerging in aquatic animals. Importantly, the evolution of the Articulavirales was likely shaped by multiple aquatic-terrestrial transitions and substantial host jumps, some of which are still observable today.


Asunto(s)
Gripe Humana , Orthomyxoviridae , Virus ARN , Animales , Humanos , Filogenia , Virus ARN/genética , Invertebrados/genética , Orthomyxoviridae/genética , ARN , Evolución Molecular , ARN Viral/genética , Mamíferos/genética
3.
medRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873191

RESUMEN

Background: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. Results: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 101-102 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. Conclusions: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.

4.
Prog Biophys Mol Biol ; 182: 103-108, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37369293

RESUMEN

Early in the pandemic, a simple, open-source, RNA extraction-free RT-qPCR protocol for SARS-CoV-2 detection in saliva was developed and made widely available. This simplified approach (SalivaDirect) requires only sample treatment with proteinase K prior to PCR testing. However, feedback from clinical laboratories highlighted a need for a flexible workflow that can be seamlessly integrated into their current health and safety requirements for the receiving and handling of potentially infectious samples. To address these varying needs, we explored additional pre-PCR workflows. We built upon the original SalivaDirect workflow to include an initial incubation step (95 °C for 30 min, 95 °C for 5 min or 65 °C for 15 min) with or without addition of proteinase K. The limit of detection for the workflows tested did not significantly differ from that of the original SalivaDirect workflow. When tested on de-identified saliva samples from confirmed COVID-19 individuals, these workflows also produced comparable virus detection and assay sensitivities, as determined by RT-qPCR analysis. Exclusion of proteinase K did not negatively affect the sensitivity of the assay. The addition of multiple heat pretreatment options to the SalivaDirect protocol increases the accessibility of this cost-effective SARS-CoV-2 test as it gives diagnostic laboratories the flexibility to implement the workflow which best suits their safety protocols.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Endopeptidasa K , Saliva , COVID-19/diagnóstico , Reacción en Cadena de la Polimerasa , ARN , Sensibilidad y Especificidad , Prueba de COVID-19
5.
Genome Biol Evol ; 15(4)2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36974986

RESUMEN

Developing a timely and effective response to emerging SARS-CoV-2 variants of concern (VOCs) is of paramount public health importance. Global health surveillance does not rely on genomic data alone to identify concerning variants when they emerge. Instead, methods that utilize genomic data to estimate the epidemiological dynamics of emerging lineages have the potential to serve as an early warning system. However, these methods assume that genomic data are uniformly reported across circulating lineages. In this study, we analyze differences in reporting delays among SARS-CoV-2 VOCs as a plausible explanation for the timing of the global response to the former VOC Mu. Mu likely emerged in South America in mid-2020, where its circulation was largely confined. In this study, we demonstrate that Mu was designated as a VOC ∼1 year after it emerged and find that the reporting of genomic data for Mu differed significantly than that of other VOCs within countries, states, and individual laboratories. Our findings suggest that nonsystematic biases in the reporting of genomic data may have delayed the global response to Mu. Until they are resolved, the surveillance gaps that affected the global response to Mu could impede the rapid and accurate assessment of future emerging variants.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/genética , SARS-CoV-2/genética , Sesgo , Genómica
6.
Cell Rep Med ; 4(2): 100943, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36791724

RESUMEN

The chronic infection hypothesis for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant emergence is increasingly gaining credence following the appearance of Omicron. Here, we investigate intrahost evolution and genetic diversity of lineage B.1.517 during a SARS-CoV-2 chronic infection lasting for 471 days (and still ongoing) with consistently recovered infectious virus and high viral genome copies. During the infection, we find an accelerated virus evolutionary rate translating to 35 nucleotide substitutions per year, approximately 2-fold higher than the global SARS-CoV-2 evolutionary rate. This intrahost evolution results in the emergence and persistence of at least three genetically distinct genotypes, suggesting the establishment of spatially structured viral populations continually reseeding different genotypes into the nasopharynx. Finally, we track the temporal dynamics of genetic diversity to identify advantageous mutations and highlight hallmark changes for chronic infection. Our findings demonstrate that untreated chronic infections accelerate SARS-CoV-2 evolution, providing an opportunity for the emergence of genetically divergent variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Infección Persistente , Genoma Viral , Genotipo
7.
EBioMedicine ; 89: 104482, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36821889

RESUMEN

BACKGROUND: Since the US reported its first COVID-19 case on January 21, 2020, the science community has been applying various techniques to forecast incident cases and deaths. To date, providing an accurate and robust forecast at a high spatial resolution has proved challenging, even in the short term. METHOD: Here we present a novel multi-stage deep learning model to forecast the number of COVID-19 cases and deaths for each US state at a weekly level for a forecast horizon of 1-4 weeks. The model is heavily data driven, and relies on epidemiological, mobility, survey, climate, demographic, and SARS-CoV-2 variant frequencies data. We implement a rigorous and robust evaluation of our model-specifically we report on weekly performance over a one-year period based on multiple error metrics, and explicitly assess how our model performance varies over space, chronological time, and different outbreak phases. FINDINGS: The proposed model is shown to consistently outperform the CDC ensemble model for all evaluation metrics in multiple spatiotemporal settings, especially for the longer-term (3 and 4 weeks ahead) forecast horizon. Our case study also highlights the potential value of variant frequencies data for use in short-term forecasting to identify forthcoming surges driven by new variants. INTERPRETATION: Based on our findings, the proposed forecasting framework improves upon the available state-of-the-art forecasting tools currently used to support public health decision making with respect to COVID-19 risk. FUNDING: This work was funded the NSF Rapid Response Research (RAPID) grant Award ID 2108526 and the CDC Contract #75D30120C09570.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , Estados Unidos , SARS-CoV-2 , Benchmarking , Predicción
8.
EMBO Rep ; 24(2): e56578, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36651521

RESUMEN

Public health strategies to mitigate the emergence of novel pathogenic viruses should implement longitudinal metagenomic surveillance of ecosystems experiencing biodiversity changes to identify generalist viruses.


Asunto(s)
Ecosistema , Virus , Biodiversidad , Salud Pública , Medición de Riesgo
9.
Virus Evol ; 9(1): veac124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36694816

RESUMEN

The flavivirids (family Flaviviridae) are a group of positive-sense RNA viruses that include well-documented agents of human disease. Despite their importance and ubiquity, the timescale of flavivirid evolution is uncertain. An ancient origin, spanning millions of years, is supported by their presence in both vertebrates and invertebrates and by the identification of a flavivirus-derived endogenous viral element in the peach blossom jellyfish genome (Craspedacusta sowerbii, phylum Cnidaria), implying that the flaviviruses arose early in the evolution of the Metazoa. To date, however, no exogenous flavivirid sequences have been identified in these hosts. To help resolve the antiquity of the Flaviviridae, we mined publicly available transcriptome data across the Metazoa. From this, we expanded the diversity within the family through the identification of 32 novel viral sequences and extended the host range of the pestiviruses to include amphibians, reptiles, and ray-finned fish. Through co-phylogenetic analysis we found cross-species transmission to be the predominate macroevolutionary event across the non-vectored flavivirid genera (median, 68 per cent), including a cross-species transmission event between bats and rodents, although long-term virus-host co-divergence was still a regular occurrence (median, 23 per cent). Notably, we discovered flavivirus-like sequences in basal metazoan species, including the first associated with Cnidaria. This sequence formed a basal lineage to the genus Flavivirus and was closer to arthropod and crustacean flaviviruses than those in the tamanavirus group, which includes a variety of invertebrate and vertebrate viruses. Combined, these data attest to an ancient origin of the flaviviruses, likely close to the emergence of the metazoans 750-800 million years ago.

10.
Genome Biol ; 23(1): 236, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348471

RESUMEN

Effectively monitoring the spread of SARS-CoV-2 mutants is essential to efforts to counter the ongoing pandemic. Predicting lineage abundance from wastewater, however, is technically challenging. We show that by sequencing SARS-CoV-2 RNA in wastewater and applying algorithms initially used for transcriptome quantification, we can estimate lineage abundance in wastewater samples. We find high variability in signal among individual samples, but the overall trends match those observed from sequencing clinical samples. Thus, while clinical sequencing remains a more sensitive technique for population surveillance, wastewater sequencing can be used to monitor trends in mutant prevalence in situations where clinical sequencing is unavailable.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Aguas Residuales , ARN Viral/genética , Transcriptoma
11.
medRxiv ; 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35794895

RESUMEN

The chronic infection hypothesis for novel SARS-CoV-2 variant emergence is increasingly gaining credence following the appearance of Omicron. Here we investigate intrahost evolution and genetic diversity of lineage B.1.517 during a SARS-CoV-2 chronic infection lasting for 471 days (and still ongoing) with consistently recovered infectious virus and high viral loads. During the infection, we found an accelerated virus evolutionary rate translating to 35 nucleotide substitutions per year, approximately two-fold higher than the global SARS-CoV-2 evolutionary rate. This intrahost evolution led to the emergence and persistence of at least three genetically distinct genotypes suggesting the establishment of spatially structured viral populations continually reseeding different genotypes into the nasopharynx. Finally, using unique molecular indexes for accurate intrahost viral sequencing, we tracked the temporal dynamics of genetic diversity to identify advantageous mutations and highlight hallmark changes for chronic infection. Our findings demonstrate that untreated chronic infections accelerate SARS-CoV-2 evolution, ultimately providing opportunity for the emergence of genetically divergent and potentially highly transmissible variants as seen with Delta and Omicron.

12.
Commun Biol ; 5(1): 439, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545661

RESUMEN

SARS-CoV-2 variants shaped the second year of the COVID-19 pandemic and the discourse around effective control measures. Evaluating the threat posed by a new variant is essential for adapting response efforts when community transmission is detected. In this study, we compare the dynamics of two variants, Alpha and Iota, by integrating genomic surveillance data to estimate the effective reproduction number (Rt) of the variants. We use Connecticut, United States, in which Alpha and Iota co-circulated in 2021. We find that the Rt of these variants were up to 50% larger than that of other variants. We then use phylogeography to show that while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from introductions of Alpha were larger than those resulting from Iota introductions. By monitoring the dynamics of individual variants throughout our study period, we demonstrate the importance of routine surveillance in the response to COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Genómica , Humanos , Pandemias , SARS-CoV-2/genética , Estados Unidos/epidemiología
13.
Virus Evol ; 8(1): veab098, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35542310

RESUMEN

Genomic sequencing is crucial to understanding the epidemiology and evolution of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Often, genomic studies rely on remnant diagnostic material, typically nasopharyngeal (NP) swabs, as input into whole-genome SARS-CoV-2 next-generation sequencing pipelines. Saliva has proven to be a safe and stable specimen for the detection of SARS-CoV-2 RNA via traditional diagnostic assays; however, saliva is not commonly used for SARS-CoV-2 sequencing. Using the ARTIC Network amplicon-generation approach with sequencing on the Oxford Nanopore MinION, we demonstrate that sequencing SARS-CoV-2 from saliva produces genomes comparable to those from NP swabs, and that RNA extraction is necessary to generate complete genomes from saliva. In this study, we show that saliva is a useful specimen type for genomic studies of SARS-CoV-2.

14.
medRxiv ; 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35378749

RESUMEN

SARS-CoV-2 'Variants of Concern' (VOCs) continue to reshape the trajectory of the COVID-19 pandemic. However, why some VOCs, like Omicron, become globally dominant while the spread of others is limited is not fully understood. To address this question, we investigated the VOC Mu, which was first identified in Colombia in late 2020. Our study demonstrates that, although Mu is less sensitive to neutralization compared to variants that preceded it, it did not spread significantly outside of South and Central America. Additionally, we find evidence that the response to Mu was impeded by reporting delays and gaps in the global genomic surveillance system. Our findings suggest that immune evasion alone was not sufficient to outcompete highly transmissible variants that were circulating concurrently with Mu. Insights into the complex relationship between genomic and epidemiological characteristics of previous variants should inform our response to variants that are likely to emerge in the future.

15.
Cell Rep Med ; 3(4): 100583, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35480627

RESUMEN

The SARS-CoV-2 Delta variant rose to dominance in mid-2021, likely propelled by an estimated 40%-80% increased transmissibility over Alpha. To investigate if this ostensible difference in transmissibility is uniform across populations, we partner with public health programs from all six states in New England in the United States. We compare logistic growth rates during each variant's respective emergence period, finding that Delta emerged 1.37-2.63 times faster than Alpha (range across states). We compute variant-specific effective reproductive numbers, estimating that Delta is 63%-167% more transmissible than Alpha (range across states). Finally, we estimate that Delta infections generate on average 6.2 (95% CI 3.1-10.9) times more viral RNA copies per milliliter than Alpha infections during their respective emergence. Overall, our evidence suggests that Delta's enhanced transmissibility can be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on underlying population attributes and sequencing data availability.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , New England/epidemiología , Salud Pública , SARS-CoV-2/genética
16.
BMC Infect Dis ; 22(1): 284, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35337266

RESUMEN

BACKGROUND: There is an urgent need to expand testing for SARS-CoV-2 and other respiratory pathogens as the global community struggles to control the COVID-19 pandemic. Current diagnostic methods can be affected by supply chain bottlenecks and require the assistance of medical professionals, impeding the implementation of large-scale testing. Self-collection of saliva may solve these problems, as it can be completed without specialized training and uses generic materials. METHODS: We observed 30 individuals who self-collected saliva using four different collection devices and analyzed their feedback. Two of these devices, a funnel and bulb pipette, were used to evaluate at-home saliva collection by 60 individuals. SARS-CoV-2-spiked saliva samples were subjected to temperature cycles designed to simulate the conditions the samples might be exposed to during the summer and winter seasons and sensitivity of detection was evaluated. RESULTS: All devices enabled the safe, unsupervised self-collection of saliva. The quantity and quality of the samples received were acceptable for SARS-CoV-2 diagnostic testing, as determined by human RNase P detection. There was no significant difference in SARS-CoV-2 nucleocapsid gene (N1) detection between the freshly spiked samples and those incubated with the summer and winter profiles. CONCLUSION: We demonstrate inexpensive, generic, buffer free collection devices suitable for unsupervised and home saliva self-collection.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Proteínas de la Nucleocápside , Pandemias , Saliva
17.
J Infect Dis ; 225(3): 374-384, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718647

RESUMEN

BACKGROUND: The underlying immunologic deficiencies enabling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection are currently unknown. We describe deep longitudinal immune profiling of a transplant recipient hospitalized twice for coronavirus disease 2019 (COVID-19). METHODS: A 66-year-old male renal transplant recipient was hospitalized with COVID-19 March 2020 then readmitted to the hospital with COVID-19 233 days after initial diagnosis. Virologic and immunologic investigations were performed on samples from the primary and secondary infections. RESULTS: Whole viral genome sequencing and phylogenetic analysis revealed that viruses causing both infections were caused by distinct genetic lineages without evidence of immune escape mutations. Longitudinal comparison of cellular and humoral responses during primary SARS-CoV-2 infection revealed that this patient responded to the primary infection with low neutralization titer anti-SARS-CoV-2 antibodies that were likely present at the time of reinfection. CONCLUSIONS: The development of neutralizing antibodies and humoral memory responses in this patient failed to confer protection against reinfection, suggesting that they were below a neutralizing titer threshold or that additional factors may be required for efficient prevention of SARS-CoV-2 reinfection. Development of poorly neutralizing antibodies may have been due to profound and relatively specific reduction in naive CD4 T-cell pools. Seropositivity alone may not be a perfect correlate of protection in immunocompromised patients.


Asunto(s)
COVID-19 , Reinfección , Receptores de Trasplantes , Anciano , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Humanos , Masculino , Trasplante de Órganos , Filogenia , Reinfección/inmunología , Reinfección/virología , SARS-CoV-2/genética
18.
medRxiv ; 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34642698

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40-80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Delta's infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37-163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58-120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average ∼6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Delta's enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations.

19.
medRxiv ; 2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34494031

RESUMEN

Effectively monitoring the spread of SARS-CoV-2 variants is essential to efforts to counter the ongoing pandemic. Wastewater monitoring of SARS-CoV-2 RNA has proven an effective and efficient technique to approximate COVID-19 case rates in the population. Predicting variant abundances from wastewater, however, is technically challenging. Here we show that by sequencing SARS-CoV-2 RNA in wastewater and applying computational techniques initially used for RNA-Seq quantification, we can estimate the abundance of variants in wastewater samples. We show by sequencing samples from wastewater and clinical isolates in Connecticut U.S.A. between January and April 2021 that the temporal dynamics of variant strains broadly correspond. We further show that this technique can be used with other wastewater sequencing techniques by expanding to samples taken across the United States in a similar timeframe. We find high variability in signal among individual samples, and limited ability to detect the presence of variants with clinical frequencies <10%; nevertheless, the overall trends match what we observed from sequencing clinical samples. Thus, while clinical sequencing remains a more sensitive technique for population surveillance, wastewater sequencing can be used to monitor trends in variant prevalence in situations where clinical sequencing is unavailable or impractical.

20.
medRxiv ; 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34230934

RESUMEN

Genomic sequencing is crucial to understanding the epidemiology and evolution of SARS-CoV-2. Often, genomic studies rely on remnant diagnostic material, typically nasopharyngeal swabs, as input into whole genome SARS-CoV-2 next-generation sequencing pipelines. Saliva has proven to be a safe and stable specimen for the detection of SARS-CoV-2 RNA via traditional diagnostic assays, however saliva is not commonly used for SARS-CoV-2 sequencing. Using the ARTIC Network amplicon-generation approach with sequencing on the Oxford Nanopore MinION, we demonstrate that sequencing SARS-CoV-2 from saliva produces genomes comparable to those from nasopharyngeal swabs, and that RNA extraction is necessary to generate complete genomes from saliva. In this study, we show that saliva is a useful specimen type for genomic studies of SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...